microbiology, molecular biology, biophysical chemistry, and physics. Moreover, the
discovery of structures termed microbial nanowires are capable of reducing metal and
transferring electrons to anodes, which are synthesized by Geobacter spp. and S. oneidensis
MR-1 strain and offer viable alternatives for researchers that are aiming for renewable
energy source technologies. In addition, the most suitable properties and functionalities
of microbial nanowires demonstrated can offer promising specific applications within
the areas of bioremediation of environmental contaminants, production of bioenergy and
nanomaterials, applications for sensing, biotherapeutics, and bioelectronics, among many
others. Thus, the studies on microbial nanowires can provide interesting research areas
that are likely to shape the future of several technology sectors.
References
1. W. Gopel, “Bioelectronics and nanotechnologies,” Biosensors and Bioelectronics, vol. 13, 1998,
pp. 723–728.
2. B. Nagel, H. Dellweg, L.M. Gierasch, “Glossary for chemists of terms used in biotechnology
(IUPAC recommendations 1992),” Pure and Applied Chemistry, vol. 64, no. 1, 1992, pp. 143–168.
3. S.K. Butti, G. Velvizhi, M.L.K. Sulonen, J.M. Haavisto, E.O. Koroglu, A.Y. Cetinkaya, S. Singh,
D. Arya, J.A. Annie Modestra, K.V. Krishna, A. Verma, B. Ozkaya, A.M. Lakaniemi, J.A.
Puhakka, S.V. Mohan, “Microbial electrochemical technologies with the perspective of har
nessing bioenergy: Maneuvering towards upscaling,” Renewable and Sustainable Energy Reviews,
vol. 53, 2016, pp. 462–476.
4. Y.A. Gorby, S. Yanina, J.S. McLean, K.M. Rosso, D. Moyles, A. Dohnalkova, T.J. Beveridge,
I.S. Chang, B.H. Kim, K.S. Kim, D.E. Culley, S.R. Reed, M.F. Romine, D.A. Saffarini, E.A. Hill,
L. Shi, D.A. Elias, D.W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K.H. Nealson,
J.K. Fredrickson, “Electrically conductive bacterial nanowires produced by Shewanella onei
densis strain MR-1 and other microorganisms,” Proceedings of the National Academy of Sciences,
vol. 103, no. 30, 2006, pp. 11358–11363.
5. J.P. Duguid, I.W. Smith, G. Dempster, P.N. Edmunds, “Non-flagellar filamentous appen
dages (‘fimbriæ’) and hæmagglutinating activity in bacterium coli,” J. Pathol., vol. 70, no. 2,
1955 pp. 335–348.
6. J.C. Ottow, “Ecology, physiology, and genetics of fimbriae and pili,” Annu. Rev. Microbiol.,
vol. 29, no. 1, 1975, pp. 79–108.
7. Brinton, “Non-flagellar appendage of bacteria,” Nature, vol. 183, 1959. pp. 782–786.
8. R. Yanagawa, K. Otsuki, T. Tokui, “Electron microscopy of fine structure of corynebacterium
renale with special reference to pili,” The Graduate School of Veterinary Medicine, vol. 16, no. 1,
1968, pp. 31–37.
9. R. Fronzes, H. Remaut, G. Waksman, “Architectures and biogenesis of non-flagellar protein
appendages in gram-negative bacteria,” EMBO J, vol. 27, no. 17, 2008, pp. 2271–2280.
10. F.G. Sauer, H. Remaut, S.J. Hultgren, G. Waksman, “Fiber assembly by the chaperone–usher
pathway,” Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol. 1694, no. 1–3,
2004, pp. 259–267.
11. S.P. Nuccio, A.J. Bäumler, “Evolution of the chaperone/usher assembly pathway: Fimbrial
classification goes greek,” Microbiol Mol Biol Rev, vol. 71, no. 4, 2007, pp. 551–575.
12. A. Olsén, A. Jonsson, S. Normark, “Fibronection binding mediated a novel class of surface
organelles of Escherichia coli,” Nature, vol. 338, 1989, pp. 652–655.
13. C.L. Tsai, B.J. Burkinshaw, N.C.J. Strynadka, J.A. Tainer, “The salmonella type III secretion
system virulence effector forms a new Hexameric chaperone assembly for export of effector/
chaperone complexes,” J Bacteriol, vol. 197, no. 4, 2015, pp. 672–675.
Microbial Nanowires
183